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Principle of operation

Fig. 2  (Approx.) Clausius-Clapeyron diagram 
for a 2-salt heat pump operation.
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Current work
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Reactor (Adsorbent heat exchanger)
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Double-pipe HEX
Ammonia – Tube side
HTF (Oil) – Shell side

Dead volume filled with PTFE



Published modelling approach!
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1D to 2D
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Governing Eqns. – Reaction (dm) 
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Reaction AB e.g BaCl2 A = 8 & B = 0, MnCl2 A = 6 & B = 2 or CaCl2 A = 8 & B = 4

Reaction BC e.g MnCl2 B = 2 & C = 1 or CaCl2 B = 4 & C = 2

Derived & based on Lebrun and Spinner1 and Mazet, Amouroux and Spinner2. X = Advancement  
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Governing Eqns. – Heat Transfer
Desorption3

3 R.E.Critoph, email 08/07/2020. 
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Adsorption3 – similar but with additional gas void terms.



Output comparison – Barium Chloride

Good prediction of equilibrium 
temperature + overall good 

reaction shape (but no superheat!)

Currently fast on the 
desorption reaction but 
for adsorption reaction 

time is comparable

Major sticking point 
with the pressure rise at 

present – needs more 
digging into!

6 BAR EXAMPLE
(nr = 3, nz = 2)



Pressure rise still an 
issue but changes in 

temperature look good. 3 BAR EXAMPLE
(nr = 3, nz = 2)



Up next…
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Reactor design – Design for shell side or tubeside
Cycle simulations

Performance analysis

Understand the pressure swing issues.
Check heat transfer model 

Design for two reactors



Thank you for listening
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