MI meeting 14th December 2020

Session 2 - Ammonia-Salt Research at Warwick

Roger Moss STET Modelling adsorption reactors in Matlab

WARWICK THE UNIVERSITY OF WARWICK

Modelling adsorption reactors in Matlab

Aims:

- Simulate heat pump designs
- Model LTJ and cycling rig tests

Inputs:

- 1, 2 or more reactors
- Driven by temperature versus time water flows (heat transfer coefficient).

Uses Matlab's ODE23s solver (linked system of ODEs, "Method of Lines").

Code builds a time-derivatives vector for:

- Pressure vessel temperatures
- Temperature of each cell
- Salt ammoniation state in each ENG cell

1D or 2D structured grids Cuboid (*x*,*y*) or cylindrical (*r*,*z*)

No heat flux in the third direction.

Ability to model ENG pellets
 e.g. Cycling Rig and LTJ - external heating, internal thermocouple.
 Can also model internal heating e.g. "kebab" of ENG with central tube.

contact resistance between metal and ENG.

Cylindrical axis

Test definition example


```
test.control_tTW{1} = @(t) squarewave(t, [400 200], [10 90], 100);
```

```
test.duration = 300; % secs
```

```
test.fdOrder = 1; % 1 or 2, first or second order conduction model
```

```
test.ExpVessel.Tinit = 310; % expansion vessel
```

```
test.Pinit = 5E5; % Sets mass of ammonia (Pa).
```

```
test.Reactor(1).Tinit = 310; % repeat for each reactor
```


- Pressure assumed uniform (no porosity pressure drop)
- Temperature from conduction and heat generation calculation
- No reaction between the adsorption and desorption lines.
- Calculation repeats over all reactions (e.g. 8-4, 4-2, 2-1).
- If using a salt mixture, repeats for each salt.
- Gas heat transfer during diffusion modelled at its source/sink cell only.

Choice of heat flux calculations (1): Simple model

Assume constant 1D heat flux (linear W/m², radial W/m) between a pair of cell centres

Heat flux calculations (2): Second-order model

Assume heat generation q' causes linear increase of heat flux in each grid direction.

All the finite difference coefficients are calculated prior to iteration.

Calculating the cell wall heat fluxes in dimensions 1 & 2 takes just 2 lines of code:

```
for i = 1:ra(2), Q1(:,i) = interps(1).W(:,:,i) * uR(iR).Taug(:, i+1); end
for i = 1:ra(1), Q2(i,:) = uR(iR).Taug(i+1,:) * interps(2).W(:,:,i); end
```

(The augmented temperature matrix Taug includes the gas or water temperatures as well as the cell-centre temperatures).

Heat transfer to reactor shell and expansion vessel.

Absorption, desorption and temperature changes lead to gas flow between vessels.
At each time step:

- i. Use mass of non-absorbed ammonia to calculate the system pressure.
- ii. Calculate the rate of pressure change:
- iii. Calculate adiabatic mass flow rate between vessels
- iv. Unsteady energy equation for each vessel find rate of change of mixed-out temperature.

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \dot{Q}_{in} + \dot{W}_{in} + \sum \dot{m}_{in,j}h_j \qquad \therefore \qquad \left(m_w c_w + m_g c_v\right) \frac{\mathrm{d}T_{R,i}}{\mathrm{d}t} = P\left(\dot{m}_{D,i}v_{Dio} - \dot{m}_{RE,i}v_{Eio}\right) + \dot{Q}_{in}$$

$$\left(m_{w}c_{w}+m_{g}c_{v}\right)\frac{\mathrm{d}T_{E}}{\mathrm{d}t}=P\sum_{1:N}\left(\dot{m}_{RE,i}v_{Eio}\right)$$

Mass flow rate
$$\dot{m}_{gg}(t)$$
 at T_g

 Lemperature $T_g(t)$

 Mass flow rate $\dot{m}_{gg}(t)$ at T_g

 Expansion vessel V_g , temperature $T_g(t)$

 Nass flow rate $\dot{m}_{gg}(t)$

 Mass flow rate $\dot{m}_{gg}(t)$

 Mass flow rate $\dot{m}_{gg}(t)$

 Notation vessel V_g , temperature $T_g(t)$

 Notation vessel V_g , temperature $T_g(t)$

 Notation $V_g(t)$, nodal dry mass $m(i)$, sp.volume $v_n(i,t)$, temperature $T_n(i,t)$, states $x(i,t), y(i,t)$, heat flux m $\dot{q}(i,t)$
 Expansion vessel heat flux m $\dot{q}(i,t)$

 System pressure $p(t)$

 Dry salt fraction $s = \frac{M_{Sold}}{M_{ENG+Sold}}$

$$\dot{m}_{RE,i} = \dot{m}_{D,i} \left(\frac{T_{io}}{T_R}\right) - \frac{V_{R,i}}{\gamma R T_R} \dot{P}$$

$$\frac{\dot{P}}{P} \sum_{0:N} \left(\frac{\gamma - 1}{\gamma} c_{v} m_{i} T_{R,i} \right) = P \sum \left(\dot{m}_{i} v_{io,i} \right)$$
seels $\dot{m} = \dot{m} \left(\frac{T_{io}}{\gamma} \right) - \frac{V_{R,i}}{\rho}$

Saturated Properties							Superheated Properties (<i>t - t_s</i>)			
Temperature - t _s - (°C)	Pressure - p _s - (bar)	Specific Volume - v _i - (m ³ /kg)	Specific Enthalpy		Specific Entropy		Abs. Temperature (50 K)		Abs. Temperature (100 K)	
			saturated liquid - h _f - (kJ/kg)	saturated vapor - h _g - (kJ/kg)	saturated liquid - s _f - (kJ/kgK)	saturated vapor - s _g - (kJ/kgK)	Specific Enthalpy - h - (kJ/kg)	Specific Entropy - s - (kJ/kgK)	Specific Enthalpy - h - (kJ/kg)	Specific Entropy - s - (kJ/kgK)
-50	0.4089	2.625	-44.4	1373.3	-0.194	6.159	1479.8	6.592	1585.9	6.948
-45	0.5454	2.005	-22.3	1381.6	-0.096	6.057	1489.3	6.486	1596.1	6.839
-40	0.7177	1.552	0	1390.0	0	5.962	1498.6	6.387	1606.3	6.736
-35	0.9322	1.216	22.3	1397.9	0.095	5.872	1507.9	6.293	1616.3	6.639
-30	1.196	0.9633	44.7	1405.6	0.188	5.785	1517.0	6.203	1626.3	6.547
-28	1.317	0.8809	53.6	1408.5	0.224	5.751	1520.7	6.169	1630.3	6.512
-26	1.447	0.8058	62.6	1411.4	0.261	5.718	1524.3	6.135	1634.2	6.477
-24	1.588	0.7389	71.7	1414.3	0.297	5.686	1527.9	6.103	1638.2	6.444
-22	1.740	0.6783	80.8	1417.3	0.333	5.655	1531.4	6.071	1642.2	6.411

Quadratic fit at each tabulated T_{sat} Then interpolate to:

- Convert P, T to T_{sat} and (T- T_{sat})
- Get coefficients for this T_{sat}
- Get *h*, *s* and v_g correction factor at this (*T*- T_{sat})

$$u = h - pv, \quad c_p = \frac{\mathrm{d}h}{\mathrm{d}T}\Big|_P, \quad c_v = c_p - \frac{\mathrm{d}(PV)}{\mathrm{d}T}$$

(Superheated specific volume estimated from van der Waals' equation.)

Ammonia properties from superheat tables

Status

- Simulation code is written.
- \succ (x,y) conduction seems to work well
- > (r,z) conduction nearly finished
- Reaction rate calculations need checking

