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Outline

• A case study concerning ionic liquids

• A case study concerning a metal-organic framework  



In green chemistry, ionic liquids can be employed for

• thermal storage

• thermal exchange

in solar concentrating power plants, where they are in contact with pipes and

vessels.

Ionic liquids: the problem

Are they stable?
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The ionic liquids examined
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The metals examined

• Steel

• Copper

• Brass



The method

We used High Resolution Magic Angle Spinning NMR spectroscopy to characterize the 

products of degradation

We performed long-term exposure tests at high temperature on:

• each IL alone

• each IL in the presence of each metal 

4 hrs, 200 °C 24 hrs, 200 °C 168 hrs, 200 °C0 hrs, 200 °C

A

B

C

steel copper brass blank steel copper brass blank steel copper brass blank steel copper brass blank
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1H HR MAS spectrum of B after heating for 168 hours
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• 1H MAS single pulse

• 13C MAS single pulse

• 31P MAS single pulse (only for sample C)

• selective TOCSY to identify spin systems

• HSQC  to correlate 1H and 13C signals

Possible degradation products identified through the 
application of specific pulse sequences
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B cation is thermally stable
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Degradation products as a function of heating time for B
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Stability of B cation after heating in the presence of steel

B/steel after 168 hr heating

B after 168 hr heating

B blank

1234 ppm

Principal species: B cation

• B cation is stable when heated alone and in the presence of a metal

• the line broadening of the B/steel spectrum could be due to the partial dissolution

of the metal

1H HR MAS spectra of B



• The presence of the metals does not affect significantly the degradation products 
observed

• Line broadening indicates that the metal partially dissolves in B as a paramagnetic
species

Effect of the metals on the degradation products

5.5 5.0 4.5 4.06.0

B/steel

B/copper

B/brass

ppm

B blank

1H MAS spectra of B heated for 168 hours with the metals



-1001020 ppm

C/steel after 168 hr heating

C after 168 hr heating

C blank

C cation: stability

1H HR MAS spectra of C

Peculiar behaviour of C compared to B:

• Broad spectrum of C cation after heating in the presence of steel indicating a 
considerable dissolution of steel

• The dissolution of steel prevents us from detecting possible degradation products



4 hrs

24 hrs

168 hrs

31P HR MAS spectra of C after heating for different times

C anion: thermal degradation

-130 -140 -150 -160 ppm

0 -10 -20 ppm

N

N

CH2

C
H2

HO

H3C

F3C

S

N

S

CF3

O O

O O

N F3C

S

N

S

CF3

O O

O O

H2C

H2C

N

CH2

CH2

CH2

CH3

H2C

CH2

H3C

P

F2C

F F

F

CF2

F2C

CF3

CF3

CF3

CH2

H2C

CH2

H3C

C
H2

H3C

H2
C

C
H2

CH3

CH2

H2C

CH2

CH3

C anion

Signal decreases with time

Signal increases with time
Degradation products of C anion



• B cation is thermally stable

• B cation is stable after heating in the presence a metal

• C anion is thermally unstable

• C dissolves the metals in larger amounts than B, preventing the detection of

the degration products

• A (not shown) behaves similarly to B

Conclusions on the ionic liquids



Outline

• A case study concerning ionic liquids

• A case study concerning a metal-organic framework



Motivation

• NH2-MIL-125 is a promising material in the field of adsorption heat

transformation

• The efficiency of the process is related to the adsorbent

• Gaining information on the adsorbent at a microscopic level may drive 

the design of materials with enhanced properties

The metal-organic framework: NH2-MIL-125 



Microscopic properties explored:

• Framework flexibility

• Water mobility

using relaxometry and solid state NMR

The metal-organic framework: NH2-MIL-125 



NH2-MIL-125: the structure 

Ti8O8(OH)4(NH2-BDC)6
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From the linewidth and the position 
of the peaks, we set: 

tπ flip≥ τrot >2.2 s at the three 
temperatures

OO

O O

N
H

H

τrot

tπ flip

S. Pizzanelli, S. Monti, L. G. Gordeeva, M. V. Solovyeva, A. Freni, C. Forte “A Close View to the Organic Linker in a MOF: Structural Insights from a Combined
1H NMR Relaxometry and Computational Investigation”, Phys. Chem. Chem. Phys. 22 (2020) 15222-15230.



13C CP-MAS spectra of NH2-MIL-125 at different pore filling factors q

Local rearrangement of the organic linker

S. Pizzanelli, A. Freni, C. Forte “Water Modulated Framework Flexibility in NH2-MIL-125: Highlights from 13C Nuclear Magnetic Resonance “ Heat Transfer 
Eng. under revision

Does water influence the p flip motion?



13C CP-MAS spectra of NH2-MIL-125 at different pore filling factors q

Local rearrangement of the organic linker

S. Pizzanelli, A. Freni, C. Forte “Water Modulated Framework Flexibility in NH2-MIL-125: Highlights from 13C Nuclear Magnetic Resonance “ Heat Transfer 
Eng. under revision

Does water influence the p flip motion?

The broadening of 3, 5, 6 carbon signals at q=0.22 indicates that water induces an 
acceleration of  the p flip compared to the dry adsorbent



Water mobility in NH2-MIL-125

1H R1 of hydrated NH2-MIL-125
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water moving on the surface,
characteristic time 0.1-10 s

water desorbing from 
the surface,

characteristic time 30 ns

bulk-like water rapidly reorienting,
characteristic time 0.4 ns 

S. Pizzanelli, A. Freni, A. H. Farmahini, L. G. Gordeeva, L. Sarkisov, M. V. Solovyeva, C. Forte “Water dynamics in a MOF: insights from a combined 1H NMR
relaxometry and computational investigation“, in preparation



Water mobility in NH2-MIL-125

1H R1 of hydrated NH2-MIL-125 at different temperatures
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Water mobility in NH2-MIL-125

1H R1 of hydrated NH2-MIL-125 at different temperatures

Extraction of activation energies Eact relative to the dynamic processes:

• Eact relative to the effective diffusion coefficient of water in the porous

matrix= 15.9±1.9 kJ/mol

The value is close to the one of bulk water and reflects excursions of

bound molecules into the the bulk-like phase

• Eact relative to water desorbing from the surface= 4.5±0.5 kJ/mol.

This value is quite small and indicates that the environment of bound

water is similar to that of bulk-like water



Conclusions on the metal-organic framework 

Solid state NMR and relaxometry gave information on 

• the π flip of the organic linker

• the dynamic processes of water adsorbed in the pores in time scales

ranging between 0.1 ns to 10 s   
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