

Nuclear magnetic resonance for green chemistry: two case studies

Silvia Pizzanelli

silvia.pizzanelli@pi.iccom.cnr.it

Mission Innovation Heating and Cooling - Sorption Heat Pump Systems 3rd meeting: Workshop Monday 14th December 2020

Solid State NMR joint laboratory

National Research Council of Italy

Dipartimento di Chimica e Chimica Industriale Università di Pisa

Solid State NMR Spectrometers

Solid State NMR 400 MHz Varian Infinity Plus 400

Solid State NMR 500 MHz, Bruker Avance Neo

Relaxometers

TD NMR (21 MHz), Niumag magnet + Stelar PCNMR

Fast Field-Cycling Relaxometer, Stelar SpinMaster 2000 (10 kHz-42 MHz)

Outline

- A case study concerning ionic liquids
- A case study concerning a metal-organic framework

Ionic liquids: the problem

In green chemistry, ionic liquids can be employed for

- thermal storage
- thermal exchange

in solar concentrating power plants, where they are in contact with pipes and vessels.

Are they stable?

The ionic liquids examined

The metals examined

- Steel
- Copper
- Brass

The method

We performed long-term exposure tests at high temperature on:

- each IL alone
- each IL in the presence of each metal

steel copper brass blank steel copper brass blank steel copper brass blank steel copper brass blank

We used **High Resolution Magic Angle Spinning NMR** spectroscopy to characterize the products of degradation

¹H HR MAS spectrum of B after heating for 168 hours

¹H HR MAS spectrum of B after heating for 168 hours

¹H HR MAS spectrum of B after heating for 168 hours

Possible degradation products identified through the application of specific pulse sequences

- ¹H MAS single pulse
- ¹³C MAS single pulse
- ³¹P MAS single pulse (only for sample C)
- selective TOCSY to identify spin systems
- HSQC to correlate ¹H and ¹³C signals

Degradation products of B

Quantification of the degradation products of B

After heating for 168 hrs, every **100 B molecules** there are:

molecules

1.7

0.3-0.7

0.02-0.04

B cation is thermally stable

Degradation products as a function of heating time for B

¹H HR MAS spectra of B heated for heated for different times

Stability of B cation after heating in the presence of steel

Principal species: B cation

- B cation is stable when heated alone and in the presence of a metal
- the line broadening of the B/steel spectrum could be due to the partial dissolution of the metal

Effect of the metals on the degradation products

- The presence of the metals does not affect significantly the degradation products observed
- Line broadening indicates that the metal partially dissolves in B as a paramagnetic species

C cation: stability

Peculiar behaviour of C compared to B:

- Broad spectrum of C cation after heating in the presence of steel indicating a considerable dissolution of steel
- The dissolution of steel prevents us from detecting possible degradation products

C anion: thermal degradation

³¹P HR MAS spectra of C after heating for different times

Conclusions on the ionic liquids

- B cation is **thermally stable**
- B cation is **stable after heating in the presence a metal**
- C anion is thermally unstable
- C dissolves the metals in larger amounts than B, preventing the detection of

the degration products

• A (not shown) behaves similarly to B

Outline

- A case study concerning ionic liquids
- A case study concerning a metal-organic framework

The metal-organic framework: NH₂-MIL-125

Motivation

NH₂-MIL-125 is a promising material in the field of adsorption heat

transformation

• The efficiency of the process is related to the adsorbent

Gaining information on the adsorbent at a microscopic level may drive

the design of materials with enhanced properties

The metal-organic framework: NH₂-MIL-125

Microscopic properties explored:

- Framework flexibility
- Water mobility

using relaxometry and solid state NMR

NH₂-MIL-125: the structure

¹H R_1 of dry NH_2 -MIL-125

S. Pizzanelli, S. Monti, L. G. Gordeeva, M. V. Solovyeva, A. Freni, C. Forte "A Close View to the Organic Linker in a MOF: Structural Insights from a Combined ¹H NMR Relaxometry and Computational Investigation", Phys. Chem. Chem. Phys. 22 (2020) 15222-15230.

Does water influence the π flip motion?

 ^{13}C CP-MAS spectra of NH $_2$ -MIL-125 at different pore filling factors θ

S. Pizzanelli, A. Freni, C. Forte "Water Modulated Framework Flexibility in NH₂-MIL-125: Highlights from ¹³C Nuclear Magnetic Resonance "Heat Transfer Eng. under revision

Does water influence the π flip motion?

 ^{13}C CP-MAS spectra of NH $_2$ -MIL-125 at different pore filling factors θ

The broadening of 3, 5, 6 carbon signals at θ =0.22 indicates that water induces an acceleration of the π flip compared to the dry adsorbent

S. Pizzanelli, A. Freni, C. Forte "Water Modulated Framework Flexibility in NH₂-MIL-125: Highlights from ¹³C Nuclear Magnetic Resonance "Heat Transfer Eng. under revision

Water mobility in NH₂-MIL-125

¹H R₁ of hydrated NH₂-MIL-125

S. Pizzanelli, A. Freni, A. H. Farmahini, L. G. Gordeeva, L. Sarkisov, M. V. Solovyeva, C. Forte "Water dynamics in a MOF: insights from a combined 1H NMR relaxometry and computational investigation", in preparation

Water mobility in NH₂-MIL-125

¹H R₁ of hydrated NH₂-MIL-125 at different temperatures

Water mobility in NH₂-MIL-125

¹H R₁ of hydrated NH₂-MIL-125 at different temperatures

Extraction of activation energies Eact relative to the dynamic processes:

• Eact relative to the effective diffusion coefficient of water in the porous matrix= 15.9±1.9 kJ/mol

The value is close to the one of bulk water and reflects excursions of bound molecules into the the bulk-like phase

 Eact relative to water desorbing from the surface= 4.5±0.5 kJ/mol. This value is quite small and indicates that the environment of bound water is similar to that of bulk-like water

Conclusions on the metal-organic framework

Solid state NMR and relaxometry gave information on

- the π flip of the organic linker
- the dynamic processes of water adsorbed in the pores in time scales ranging between 0.1 ns to 10 μs

Acknowledgements

Istituto di Chimica dei Composti OrganoMetallici-CNR Claudia Forte, Angelo Freni, Alessandro Lavacchi, Susanna Monti

Dipartimento di Chimica e Chimica Industriale-Università di Pisa **Francesca Nardelli**

Boreskov Institute of Catalysis, Novosibirsk, Russia Larisa G. Gordeeva

Department of Chemical Engineering and Analytical Science, The University of Manchester, United Kingdom Lev Sarkisov

Thank you!