MI meeting 3rd June 2021

Session 3 - Ammonia-Salt Research at Warwick

Roger Moss STET Heat pump simulation in Matlab

WARWICK THE UNIVERSITY OF WARWICK

Ammonia/salt adsorption code development

Simulation code:

- 1, 2 or more reactors
- Cuboid or cylindrical 2D grid
- ENG + 1 or more salts per reactor
- Driven by temperature versus time water flows (heat transfer coefficient).
- Models heat transfer, reaction rate, ammonia transfer through ENG

Output viewer:

- Separate window for each reactor
- Time history for area mean or spot parameters
- Animated 2D grid surfaces
- Experimental comparisons

Ability to model ENG pellets
e.g. Cycling Rig and LTJ - external heating, internal thermocouple.
Can also model internal heating e.g. "kebab" of ENG with central tube.

Conduction equation validation

Ammonia transport through ENG

Energy equations

Energy equation for each cell:

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \dot{Q}_{in} + \dot{W}_{in} + \sum \dot{m}_{in,j}h_{j}$$

$$\sum_{cell} (mc_v) \frac{\mathrm{d}T}{\mathrm{d}t} + \Delta U_{ads} \frac{\mathrm{d}m}{\mathrm{d}t} \Big|_{NH_3,ads} = \dot{Q}_{conduction} + \sum \dot{m}_{in,j} h_j$$

$$\therefore \sum_{cell} (mc_v) \frac{\mathrm{d}T}{\mathrm{d}t} + \Delta H_{ads} \frac{\mathrm{d}m}{\mathrm{d}t} \Big|_{NH_3,ads} \approx \dot{Q}_{conduction} + \sum \dot{m}_{in,j} c_p \Delta T_j$$

Energy equation for reactor vessel and its gas:

$$\sum_{eactor} (mc_v) \frac{\mathrm{d}T}{\mathrm{d}t} = \dot{Q}_{water} + \dot{Q}_{ENG} + \sum \dot{m}_{in,j} c_p \Delta T$$

Output viewer

承 Reactor simulation player

Zoom Compare File Edit View Insert Tools Desktop Window Help

1 🗃 🖬 🎍 🗔 🗖 📰 🗟 🏾

LTJ comparisons (1) – desorption, matching pressure rise

Sam's BaCl₂ at 7 bar, modelled with inner & outer gap.

90% of salt content.

Gaps	0.09 mm
y _{des}	1.5
A _{des}	1

LTJ comparisons (2) – desorption, matching internal thermocouple

THE UNIVERSITY OF WARWICK		
Gaps	0.115 mm	
y _{des}	1.5	
A _{des}	1	

 $\Lambda \Delta$

LTJ comparisons (3) – adsorption, matching pressure change

LTJ comparisons (4) – adsorption, matching internal thermocouple

Gaps	0.17 mm
y _{ads}	2.5
A _{ads}	0.1

Heat pump salt and temperature options (1) BaCl₂ & CaCl₂

Not useful – low temperature "not low

MAR

٦K

Initial simulation of two reactors

Heat pump salt and temperature options (2) NaBr & MnCl₂

Heat pump salt and temperature options (2) $NH_4Cl \& MnCl_2$

 \succ NaBr and NH₄Cl almost identical in terms of operating pressure and temperature.

T_ (°C)