

Simulation of a 4th generation district heating network operating with renewable heat sources and TES technologies

LoT-NET project

Miguel Angel Pans Castillo Philip Eames

13-12-2019

Low Temperature Heat recovery and Distribution Network Technologies (LoT-NET)

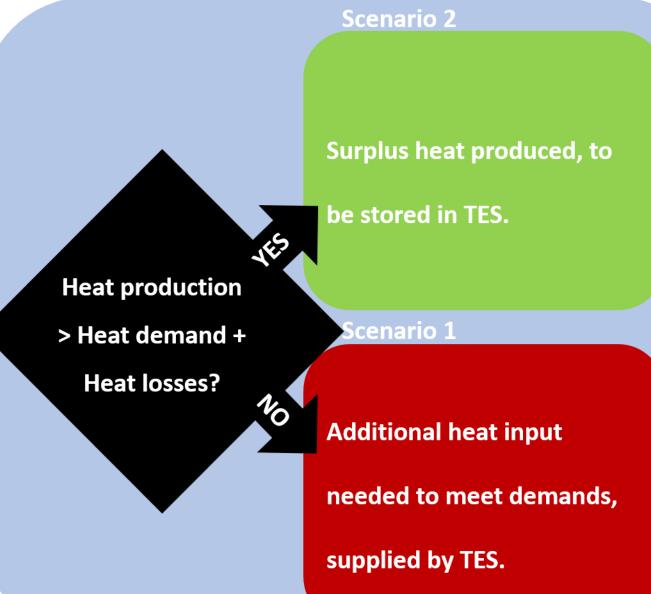
Main objectives:

- Y To develop a spatial and temporal simulation tool that can be used to simulate a smart thermal network interacting with storage and thermal transformation technologies, which will allow the adoption of 4th generation district heating concept based on low/zero carbon heat sources.
 - i. Determine and geographically map the heat demand and available heat resources and how they vary in time within an area. Obtain heat demand time resolved data (for different areas) and heat production time resolved data (for different heat resources, focusing in low carbon heat resources).
 - ii. Develop a model for a heat network based on low carbon heat sources.
 - iii. Apply the developed model to 3 selected regions: Loughborough, Bunhill and Coleraine.
- ✓ Prototype a range of alternative systems utilising chemical, phase change material or sensible heat for both the distribution and storage of energy.

Stage 2

•

hour


at

WEATHER

Heat demand at hour i

Heat production by renewable sources at hour i (kWh)

Heat losses in pipes (kWh)

Stage 1 • at hour WEATHER

Obtained with on-line tool <u>Renewables.ninja</u> developed by Staffell and Pfenninger¹⁻². The tool allows to obtain different historic hourly weather data for a given location:

- i. temperature (°C),
- ii. precipitation (mm/h),
- iii. snowfall (mm/h),
- iv. snow mass (amount of snow per land area, kg/m²),
- v. ground-level solar irradiance (W/m²),
- vi. top of atmosphere solar irradiance (W/m²),
- vii. cloud cover fraction and air density (kg/m³).

The data are taken from the MERRA-2 reanalysis.

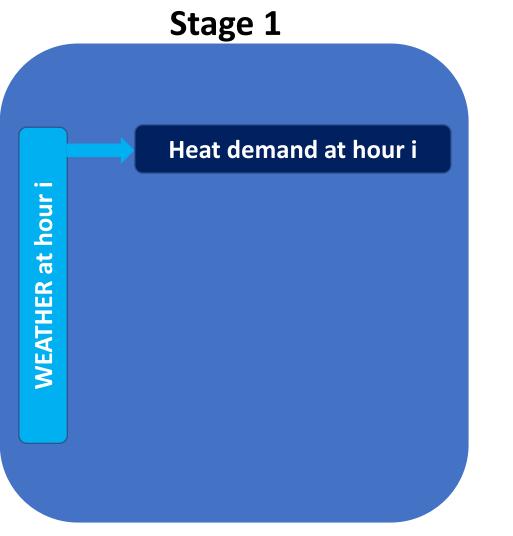
² I. Staffell, S. Pfenninger, Using bias-corrected reanalysis to simulate current and future wind power output, Energy. 114 (2016) 1224–1239. doi:10.1016/J.ENERGY.2016.08.068.

¹S. Pfenninger, I. Staffell, Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data, Energy. 114 (2016) 1251– 1265. doi:10.1016/J.ENERGY.2016.08.060.

Stage 1 • hour at WEATHER

The on-line tool <u>Renewables.ninja</u> can be used to directly estimate the hypothetical **hourly capacity factor** that could be achieved in a given location by using **Solar Photovoltaic (SPV) panels and Wind turbines.** Some variables can be modified also, such as :

- i. System loss fraction
- ii. Tilt
- iii. Azimuth angle


For the SPV panels and:

- i. Hub height
- ii. Turbine model

For the Wind.

¹S. Pfenninger, I. Staffell, Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data, Energy. 114 (2016) 1251– 1265. doi:10.1016/J.ENERGY.2016.08.060.

² I. Staffell, S. Pfenninger, Using bias-corrected reanalysis to simulate current and future wind power output, Energy. 114 (2016) 1224–1239. doi:10.1016/J.ENERGY.2016.08.068.

$$HD_i = \sum_{j=1}^4 HL_{ij} + H_{hw_i} + HL_{v_i} - H_{G_i}$$

 HL_{ij} are the **hourly heat losses through fabric** at t = i of the part of the dwelling j (where j = 1...4, being 1 = walls, 2 = floor, 3 = ceiling and 4 = glazing) (kWh)

 H_{hw_i} is the hourly heat demand originated from tap water heating (kWh)

 HL_{v_i} are the hourly heat losses due to ventilation (kWh)

 H_{G_i} are the **hourly heat gains** due to:

- 1. Occupancy
- 2. Solar heat gains

Heat demand calculation. Heat losses through fabric and due to ventilation: Equations

Hourly heat losses through fabric $HL_{ij} = U_j \cdot A_j \cdot (T_{in} - T_{out_i})$ Hourly heat losses due to ventilation $HL_{v_i} = \frac{\rho_{air} \cdot Cp_{air} \cdot HV \cdot (T_{in} - T_{out_i}) \cdot N_{air}}{3600}$

HL_{ii} are the heat losses at t = i of the part of the dwelling j (where j = 1...4, being 1 = walls, 2 = floor, 3 = ceiling and 4 = glazing) (kWh)

 U_i is the U-value or thermal transmittance of the part of the dwelling j (W/m² K)

 A_i is the area of the part of the dwelling j (m²)

T_{in} is the desired temperature inside the dwelling or the space heating control set point, and was assumed to be 21 °C (typical of that seen in UK housing [7])

 T_{out_i} is the outdoors temperature at t = i (obtained with the on-line tool <u>Renewables.ninja</u>)

 ρ_{air} is the density of the air inside the house (1.225 kg/m³ at 20°C),

Cp_{air} is the specific heat capacity of the air (1 kJ/kg K),

HV is heated volume of the dwelling (which is obtained from the dimensions showed in Table 2 for every type of dwelling, m³)

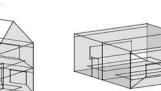
N_{air} is the number of air changes per hour, which is taken from Table 1 for every type of dwelling.

Heat demand calculation. Heat losses through fabric and due to ventilation: Assumptions

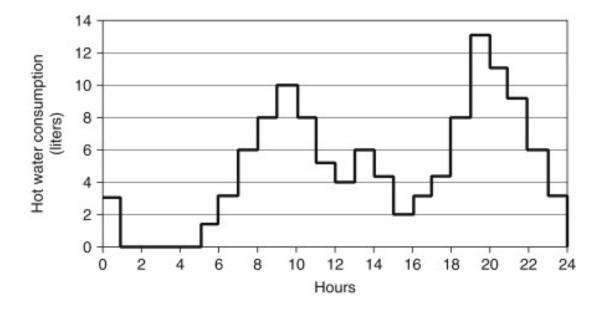
	Floor area (m ²)[1]	Heated volume (m ³)[1]	Total windows area (m²) ¹	Width (m) ²
Detached	136	286	34.00	10
Semi-detached	87	186	21.75	10
Terraced	57	142	14.25	10
Flat -1 Assumed as a 25% of the floor	56 area. according to [2]	140	14.00	10

² Assumed values.

J. Allison, K. Bell, J. Clarke, A. Cowie, A. Elsayed, G. Flett, G. Oluleye, A. Hawkes, G. Hawker, N. Kelly, M.M.M. de Castro, T. Sharpe, A. Shea, P. Strachan, P. Tuohy, Assessing domestic heat storage requirements for energy flexibility over varying timescales, Appl. Therm. Eng. 136 (2018) 602–616. doi:10.1016/J.APPLTHERMALENG.2018.02.104.
UK goverment, Approved Document L1B: conservation of fuel and power in existing dwellings, 2010 edition (incorporating 2010, 2011, 2013, 2016 and 2018 amendments), n.d. https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l (accessed November 12, 2019).


Detached

Terraced


Semidetached

Flat

	Basic U-value (W/m ² K) [1]	Improved U-value (W/m²K) [1]
External wall	0.45	0.11
Floor	0.60	0.10
Ceiling	0.25	0.13
Glazing	2.94	0.70
Infiltration (air changes per hour)	0.50	0.06

Heat demand calculation. Heat demand originated from tap water heating

Hot-water daily consumption profile. Adapted from [3].

[3] S.A. Kalogirou, S.A. Kalogirou, Solar Water Heating Systems, Sol. Energy Eng. (2009) 251–314. doi:10.1016/B978-0-12-374501-9.00005-4

$$H_{hw_i} = \frac{V_{hw_i} \rho_{water} C p_{water} \left(T_{supply} - T_{return}\right) \frac{N_{occ}}{4}}{3600 \cdot 1000}$$

 V_{hw_i} is the volume of hot water consumed per 4 person and per hour at t = i (l/h per 4 person),

 ρ_{water} is the density of water (kg/m³),

Cp_{water} is the specific heat of water (kJ/kg K),

 T_{supply} temperature of the water in the supply pipe (°C),

 T_{return} temperature of the water in the return pipe (°C) and

N_{occ} is the number of occupants.

Heat demand calculation. Solar heat gains

$$H_{G,i} = A_w \alpha \overline{F_c} \left(\overline{f_i} \tau_b I_{b,i} \overline{R_b} + \tau_d F_{rs} I_{d,i} + \frac{\rho}{2} \tau_g I_{T,i} \right)$$

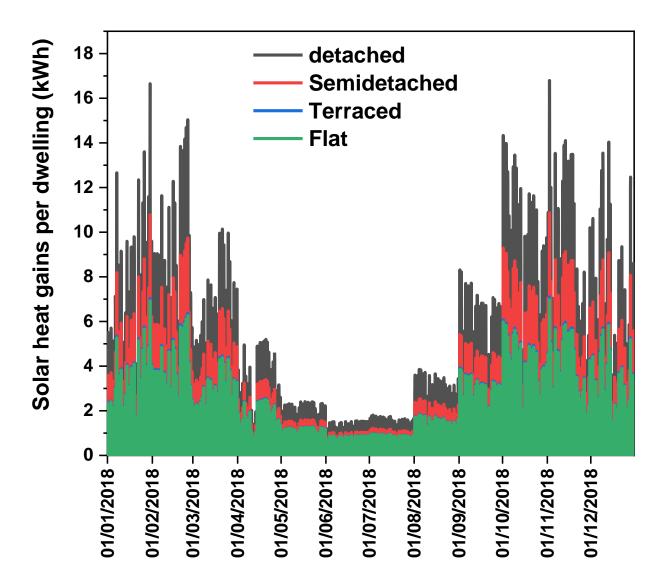
Dwelling orientation	South-facing windows (50%)
Lougborough latitude	52,8°
Ground reflectance (ρ)	0,20
Control function ($\overline{F_c}$)	1
Reflectance of the room surfaces (ι _R)	0,60
Transmittance for beam radiation (τ_b)	0,71
Transmittance for diffuse and ground-reflected (τ_d and τ_g)	0,64
Radiation view factor between receiver and sky (F _{rs})	Calculated from the dimensions of the window and overhang (using Tables at Duffie and Beckman, 1980)
Ratio of total beam radiation on a vertical surface during a month to that on a horizontal surface during the same month (\overline{R}_b)	Estimated for every month as a function of latitude from Figures at Duffie and Beckman, 1980.
Ratio of total beam radiation on the shaded receiver during a month to that on the unshaded receiver in same month (\overline{f}_i)	Calculated from dimensions of window and overhang (using Tables at Duffie and Beckman, 1980)
$I_{b,i'}$, $I_{d,i}$ and $I_{T,i}$ are, respectively, the hourly daily beam, diffuse and total solar radiation per unit area on a horizontal surface (W/m ²)	Obtained by <u>renawables.ninja</u>

Heat demand calculation. Solar heat gains

$$H_{G,i} = A_w \alpha \overline{F_c} \left(\overline{f_i} \tau_b I_{b,i} \overline{R_b} + \tau_d F_{rs} I_{d,i} + \frac{\rho}{2} \tau_g I_i \right)$$

	Detached	Semi-detached	Terraced	Flat
Relative width of window (width/height)	≈4,0	≈4,0	≈4,0	≈4,0
Relative projection of overhang (projection overhang/height window)	≈0,5	≈0,5	≈0,5	≈0,5
Overhang: position above the window (m)	0,4	0,4	0,4	0,4
Extensions (m)	0,0	0,0	0,0	0,0

 α is the effective absorptance of the window/room combination, calculated as $\alpha = 1 - \left[\frac{\frac{\tau_b \iota_R A_W}{A_R}}{1 - \iota_R \left(1 - \frac{A_W}{A_R}\right)}\right]$ [where ι_R is the reflectance of


the room surfaces, assumed as 0.6 (0.9 can be used for clean white surfaces, 0 for black surfaces) and A_R is the room surface area (walls, floor, ceiling)]

$$\alpha = 1 - \left[\frac{\frac{\tau_b \iota_R A_w}{A_R}}{1 - \iota_R \left(1 - \frac{A_w}{A_R} \right)} \right]$$

Heat demand calculation. Solar heat gains

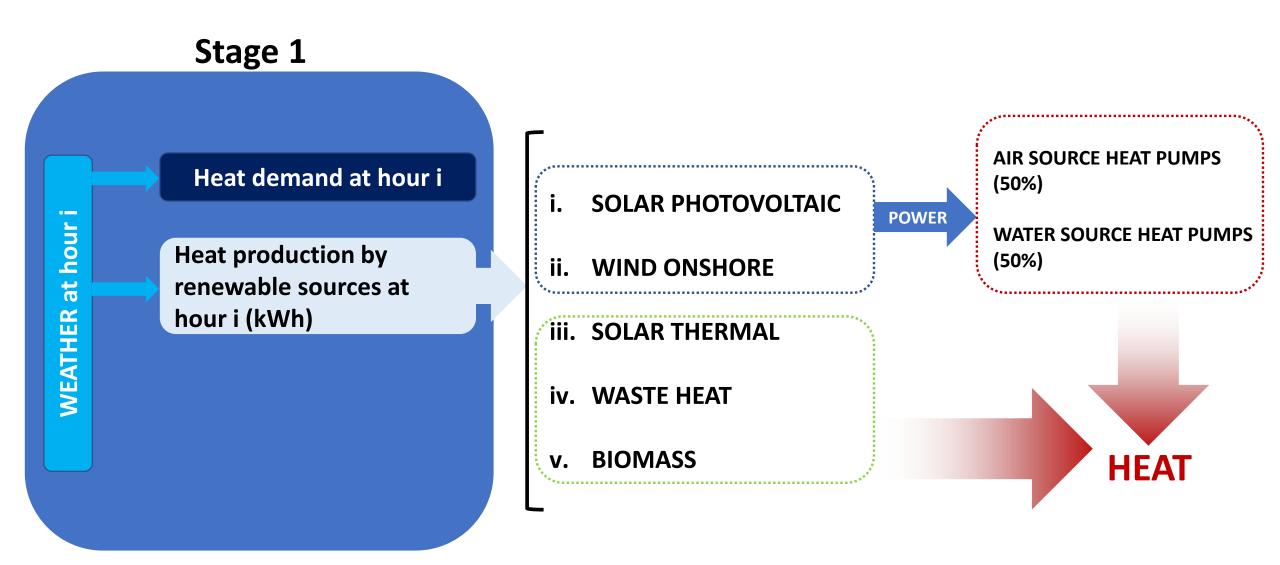
 Solar heat gains higher in the winter due to a lower sun position in the sky and therefore lower incidence angle of the sun on south-facing windows.

II. Solar heat gains higher in detached houses due to a bigger windows area in these dwellings.

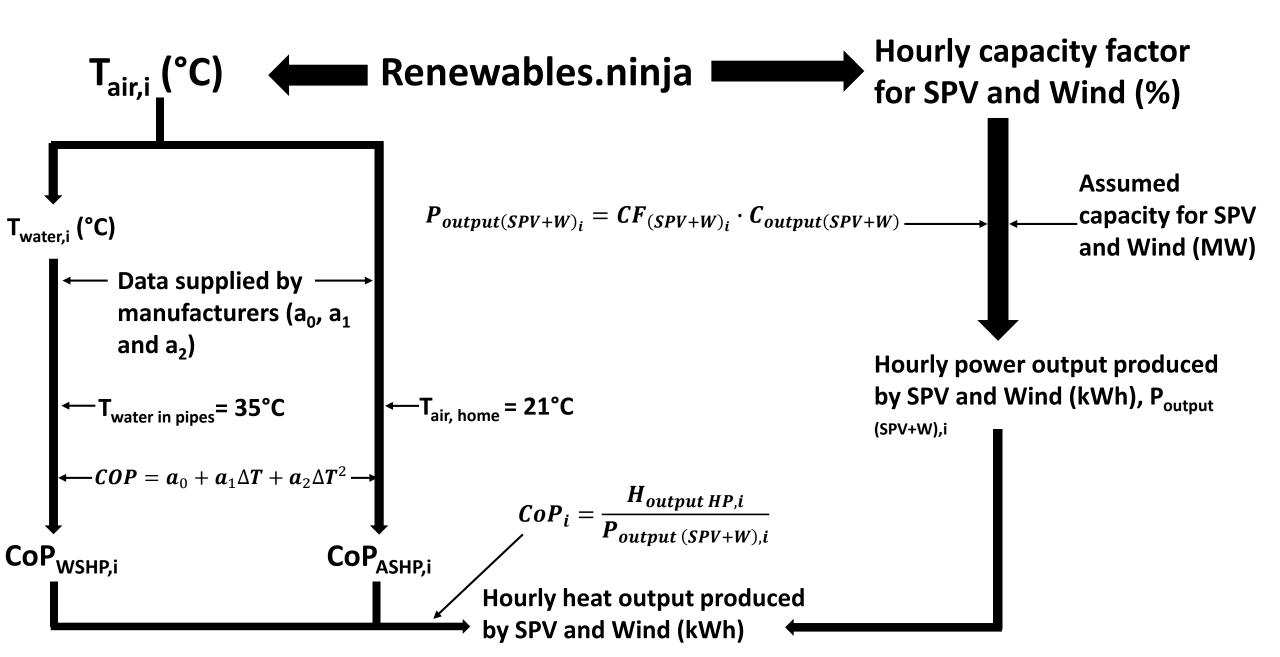
Heat demand calculation. Heat gains due to occupancy

Activity	Typical application	Occupancy density (m²/person)	lensity (and average for mixture of men, women and children)										
		(m/person)	Total		15		20	22		24		26	
				Sensible	Latent	Sensible	Latent	Sensible	Latent	Sensible	Latent	Sensible	Latent
Seated, inactive	Theatre, cinema matinee	0.75-1.0 ^(2,3)	115 (100)	100 (87)	15(13)	90(78)	25 (22)	80 (70)	35 (30)	75(65)	40 (35)	65 (57)	50(43)
Seated, inactive	Theatre, cinema evening	0.75–1.0 ^(2,3)	115 (105)	100 (91)	15(14)	90(82)	25 (23)	80 (73)	35 (32)	75(68)	40(37)	65 (59)	50(46)
Seated, light work	Restaurant	1.0-2.0 ^(2,3)	140 (126)	110 (99)	30(27)	100 (90)	40 (36)	90 (81)	50(45)	80(72)	60 (54)	70(63)	70(63)
Seated, moderate work	Office	8-39(4-6), 14(4,7)*	140 (130)	110(102)	30 (28)	100 (93)	40(37)	90 (84)	50(46)	80(74)	60 (56)	70 (65)	70(65)
Standing, light work, walking	Department store	1.7-4.3 ^(2,3)	160(141)	120 (106)	40 (35)	110(97)	50 (44)	100 (88)	60(53)	85 (75)	75 (66)	75 (66)	85(75)
Standing, light work, walking	Bank		160 (142)	120(107)	40 (35)	110(98)	50 (44)	100 (89)	60 (53)	85 (76)	75 (66)	75 (66)	85 (76)
Light bench work	Factory		235 (209)	150(133)	85 (76)	130(116)	105 (93)	115 (102)	120(107)	100 (89)	135(121)	80(71)	155 (138
Medium bench work	Factory		265 (249)	160 (150)	105 (99)	140 (132)	125 (117)	125 (117)	140 (132)	105 (99)	160 (150)	90 (85)	175(164
Heavy work	Factory		440 (440)	220 (220)	220 (220)	190 (190)	250 (250)	165 (165)	275 (275)	135 (135)	305 (305)	105 (105)	335 (335
Moderate dancing	Dance hall	0.5-1.0	265 (249)	160 (150)	105 (99)	140(132)	125 (117)	125 (117)	140(132)	105 (99)	160(150)	90 (85)	175(164

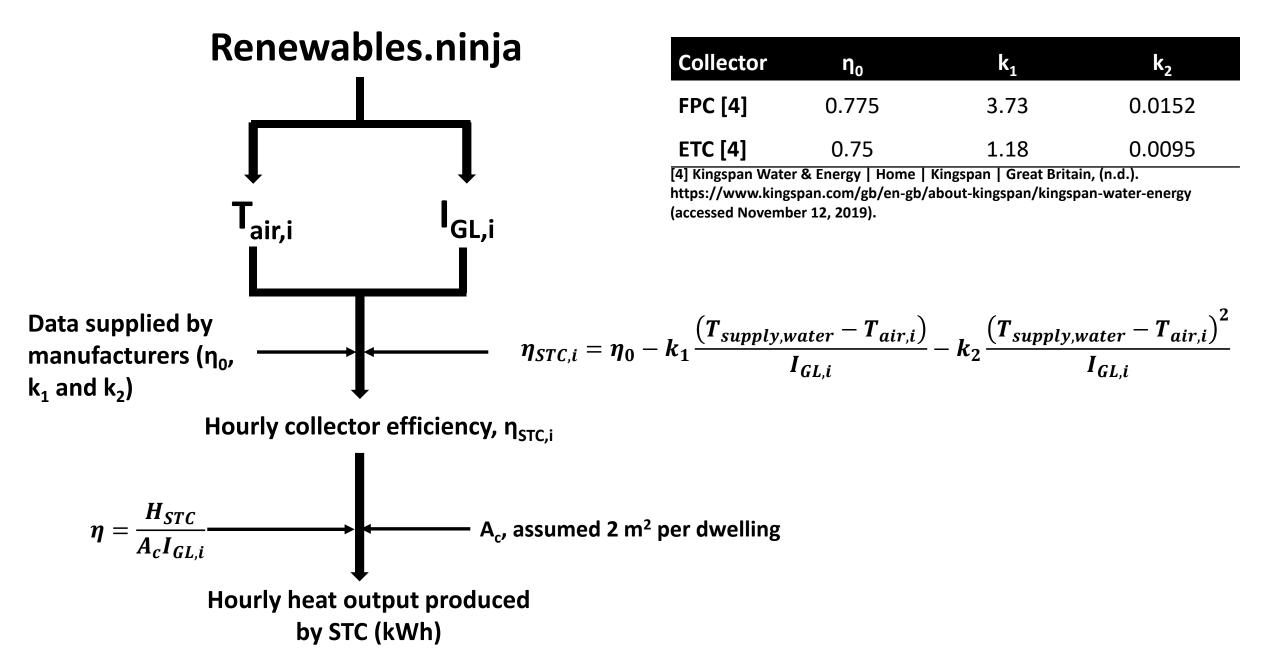
Table 6.1 Heat emission (W) from an adult male body (of surface area 2 m²) and average heat emission per person for a mixture of men, women and children typical of the stated application


* Recommended

Notes:

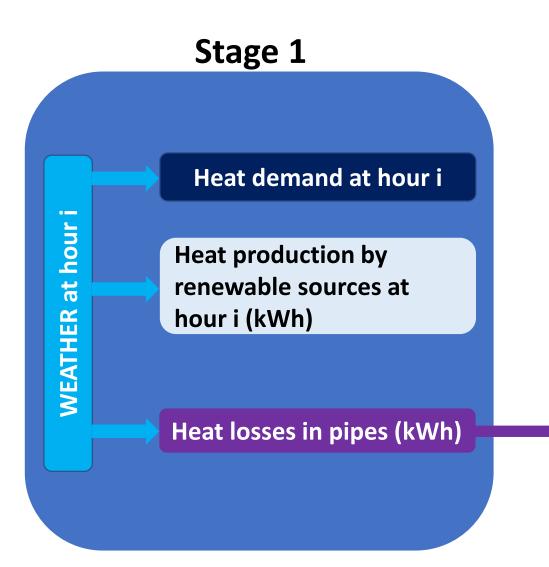

(1) Figures in parenthesis are adjusted heat gains based on normal percentage of men, women and children for the applications listed. This is based on the heat gain for women and children of 85% and 75% respectively of that of an adult male.

(2) For restaurant serving hot meals add 10 W sensible and 10 W latent for food per individual.


SOURCE: Chartered Institution of Building Services Engineers (CIBSE), <u>http://www.cibse.org/getattachment/Knowledge/CIBSE-Guide/CIBSE-Guide-A-</u> <u>Environmental-Design-NEW-2015/Guide-A-presentation.pdf.aspx</u>

Heat output produced by heat pumps powered by SPV and Wind turbines

Heat output produced by Solar thermal Collectors


SUMMARY RENEWABLES (and non renewables) AVAILABLE NEAR LOUGHBOROUGH (30 KM RADIUS).

SOURCE: https://www.carbonbrief.org/mapped-how-the-uk-generates-its-electricity

Name	Technology	Capacity (MW)	Date operation	al	Totals (MW)	
A C Shropshire (Farm AD)	Anaerobic Digestion		2	14/05/2013		
Colwick Industrial Estate (Farm and Food waste)	Anaerobic Digestion		2	30/09/2014		
Stoke Bardolph energy crop (Farm AD)	Anaerobic Digestion		2	10/07/2010		6
Green's Lodge Farm	Biomass (dedicated)		2	14/05/2013	3	2
Mountsorrel Landfill Site	Landfill gas		1.6	01/05/1996	5	
Enderby Warren Phase II	Landfill gas		4.9	01/06/1999)	
Narborough Landfill	Landfill gas		2.7	11/03/2005		
Bradgate Quarry Landfill Gas Scheme	Landfill gas		2.5	01/08/1998	3	
Lount/Smoile	Landfill gas		1.1	21/07/2003	3	
Bretby Power	Landfill gas		1.6	01/09/2001		
Dorket Head	Landfill gas		2.8	01/02/2005		
Burntstump Landfill Scheme	Landfill gas		1.8	15/04/1999)	19
Beeston Weir Hydro Scheme	Small hydro		1.7	01/02/2000)	19 1.7
East Midlands Distribution Centre	Solar photovoltaics		6.1	02/03/2015		
Walnut Yard (Phase 1)	Solar photovoltaics		1.8	31/03/2015	5	
Radcliffe Solar Farm	Solar photovoltaics		4.2	13/06/2015	5	
Wymeswold Airfield	Solar photovoltaics		34	28/03/2013	3	
Six Hills Solar Farm	Solar photovoltaics		18.7	24/03/2015	5	
Prestop Park Farm	Solar photovoltaics		16	21/03/2015	5	
Packington Solar Farm	Solar photovoltaics		13.9	16/03/2015	5	
Toyota Solar Farm	Solar photovoltaics		4.6	25/07/2011		
Atherstone	Solar photovoltaics		14.7	31/03/2015	5	
The Stables	Solar photovoltaics		1.8	22/08/2014		
Gedling Solar Farm	Solar photovoltaics		5.6	15/03/2015	; 12	<mark>21.4</mark>
East Midlands Airport	Wind Onshore		1	10/05/2011		
Severn Trent STW	Wind Onshore		2.5	26/02/2014		
Newthorpe Wind Turbine	Wind Onshore		2.5	08/04/2014		
Low Spinney Wind Farm	Wind Onshore		8	29/09/2011		14
			TOTAL		16	64.1
NO RENEWABLES						
Ratcliffe	Coal		2000	1968	3	
TOTAL		2000 MW				

TOTAL (OVERALL)

2164.1

$$HL_{p,x \text{ to } y,i} = 2 \cdot \pi \cdot \lambda \cdot L_{x \text{ to } y} \cdot \frac{\left(T_{in} - T_{out,i}\right)}{ln\left(\frac{r_{out}}{r_{in}}\right)}$$

Pipes characteristics

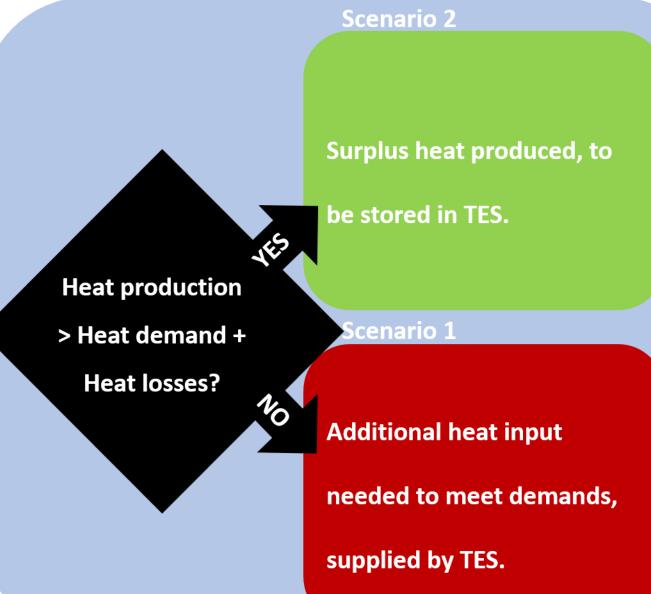
D _{in} (m)	0.009 ¹
D _{out} (m)	0.01 ¹
Insulation material	AluFlex ²
λ (W/m K)	0.023 ²
T _{supply} (°C)	50
T _{return} (°C)	35
Leagth (m)	To be decided

² M. Brand, J.E. Thorsen, S. Svendsen, Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes, Energy. (2012). doi:10.1016/j.energy.2012.02.061.

Stage 2

•

hour


at

WEATHER

Heat demand at hour i

Heat production by renewable sources at hour i (kWh)

Heat losses in pipes (kWh)

THERMAL ENERGY STORAGE

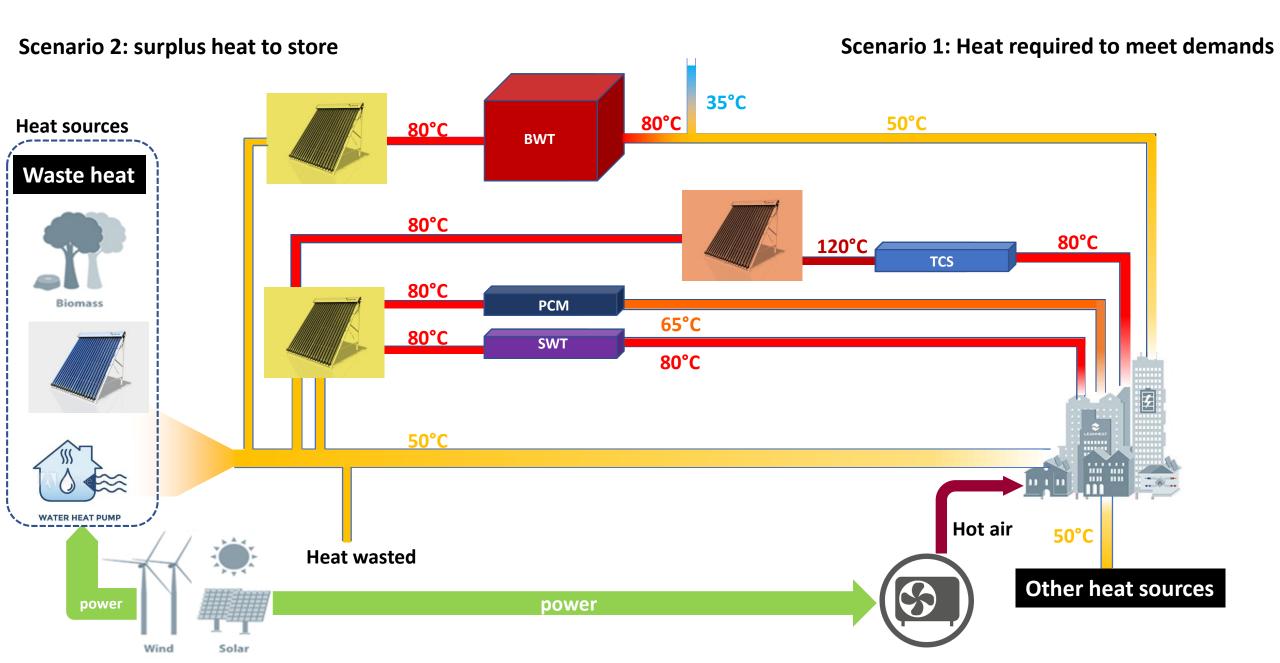
Main properties of TES materials.

PCM: Sodium acetate trihydi	rate1	TCS: MgSO ₄ + zeolite ²	Sensible: Water		
Density (kg/m ³)	1450	Density (kg/m³)	1453	Density (kg/m³)	1000
Latent heat (h, kJ/kg)	180	Reaction enthalpy (ΔH _r , KJ/Kg)	708	Specific heat (kJ/kg K)	4.18
Specific heat of liquid (kJ/kg K)	3.35	Conversion achieved (x _r %)	1 ³	Cost (£/kg)	
Specific heat of solid (kJ/kg K)	1.97	Cost (£/kg)			
Temperature of solid (cold) (°C)	30 ³				
Temperature of liquid (hot) (°C)	70 ³				
Melting/freezing point (°C)	58				

Cost (g) in, K. Mahkamov, Salt hydrace 93 latent heat storage materials: Thermophysical properties and costs, Sol. Energy Mater. Sol. Cells. 145 (2016) 255–286. doi:10.1016/J.SOLMAT.2015.10.029.

² D. Mahon, P. Henshall, G. Claudio, P.C. Eames, Feasibility study of MgSO₄ + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage, Renew. Energy. 145 (2020) 1799–1807. doi:10.1016/J.RENENE.2019.05.135.

³ Assumed values.

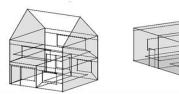

THERMAL ENERGY STORAGE

Main assumptions referred to TES devices.

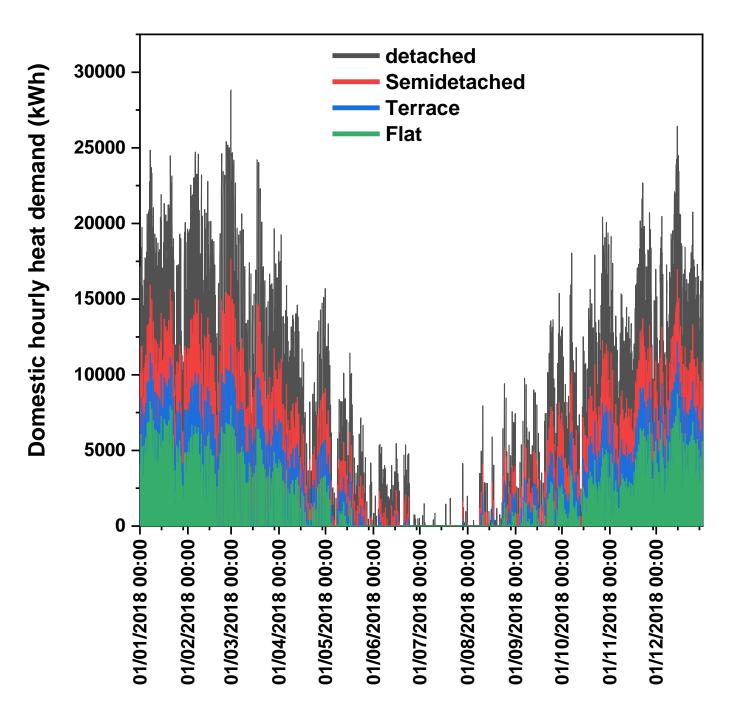
SWT PCM

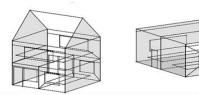
	Sensible	Latent	Sensible	Thermochemical storage
	Small Water Tanks	Phase Change Materials	Big Water Tank	Thermochemical Storage
	(SWT)	(PCM)	(BWT)	(TCS)
Maximum volume allowed (m ³) ¹	1	1	500000	1
Temperature charging (°C)	80	80	80	120
Temperature discharging (°C)	80	T range available	80	T range available
Storage capacity (kWh) ¹	26	55	52250000	143
Initial energy stored (kWh) The maximum volume allowed wh PCM and TCS is the volume per whereas when referring to BWT the the volume of the whole single unit.	every 2 dwellings,	0		S21 S21 S21 S21 S21 S21 S21 S21

Proposed operating mode for the heating district



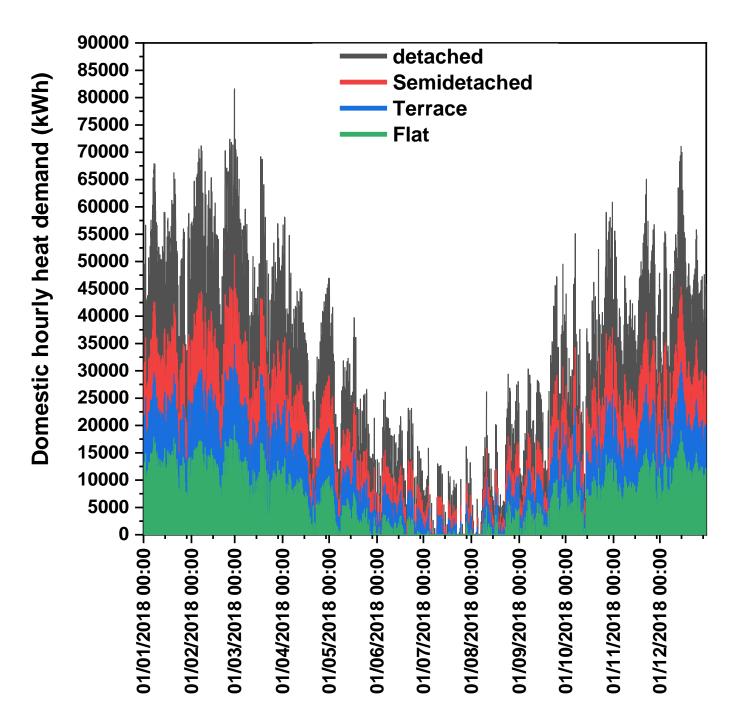
- Number of dwellings of each type with similar characteristics: 10000;
- ✓ Number of person living in the dwelling: 4;
- ✓ Heating hours: 7 am 9 am, 5 pm 9 pm;
- ✓ Working hours: 8 am to 5 pm;
- No heat demand originated from tap water heating considered here.
- Temperature inside dwelling = 21°C
- ✓ Assuming improved U-vales for the fabric.




- Number of dwellings of each type with similar characteristics: 10000;
- ✓ Number of person living in the dwelling: 4;
- ✓ Heating hours: 7 am 9 am, 5 pm 9 pm;
- ✓ Working hours: 8 am to 5 pm;
- No heat demand originated from tap water heating considered here.
- ✓ Temperature inside dwelling = 21°C
- ✓ Assuming basic U-vales for the fabric.

Detached

Semidetached




```
Terraced
```

Flat

December.

November

October

September

August

Nay

April

March

February January

Type of dwelling: detached Number of dwelling with same characteristics: 10000 Number of person living in the dwelling: 4 Heating hours: 7 am - 9 am, 5 pm - 9 pm Working hours: 8 am to 5 pm No heat losses in pipes considered for SWT, PCM and TCS **Distance from BWT to dwellings (pipes above the ground):** 1000 m No heat losses in stores considered yet Temperature inside dwelling = 21°C. Just ETSTC considered.

High number of heat charges to Big Water Tanks in summer months, due to both lower demand and higher heat production in these months

PCMs start being charged in the spring months, due to SWT reaching maximum capacity

Decembe

November October

September

August

JUIY June

Nay

April

March

February

January

500

45n

of charges

200

50

°CM.

NATER BIG TANKS

Number

KWATERSMALL TANKS

The Big Water Tank help to meet heat demands in winter and autumn months.

50n

450

400 350 S

oss oos dischar

200 Q

Number

WATER SMALL TANKS

50

WATER BIG TANKS

Ω^ˆ

Type of dwelling: flat Number of dwelling with same characteristics: 10000 Number of person living in the dwelling: 4 Heating hours: 7 am - 9 am, 5 pm - 9 pm Working hours: 8 am to 5 pm No heat losses in pipes considered for SWT, PCM and TCS Distance from BWT to dwellings (pipes above the ground): 1000 m No heat losses in stores considered yet **Temperature inside dwelling = 21°C.** Just ETSTC considered.

The low heat demand in flats leads to maximum capacity reached in SWT, PCM and BWT in summer months and therefore TCS are started to being charged.

Decemper

November

October.

September

August JUNY

June

May

April

March.

February

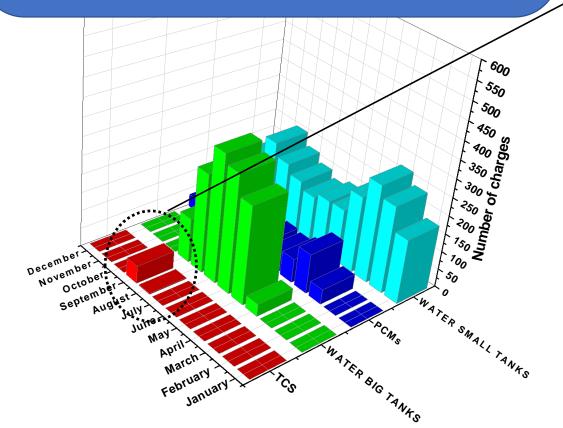
January

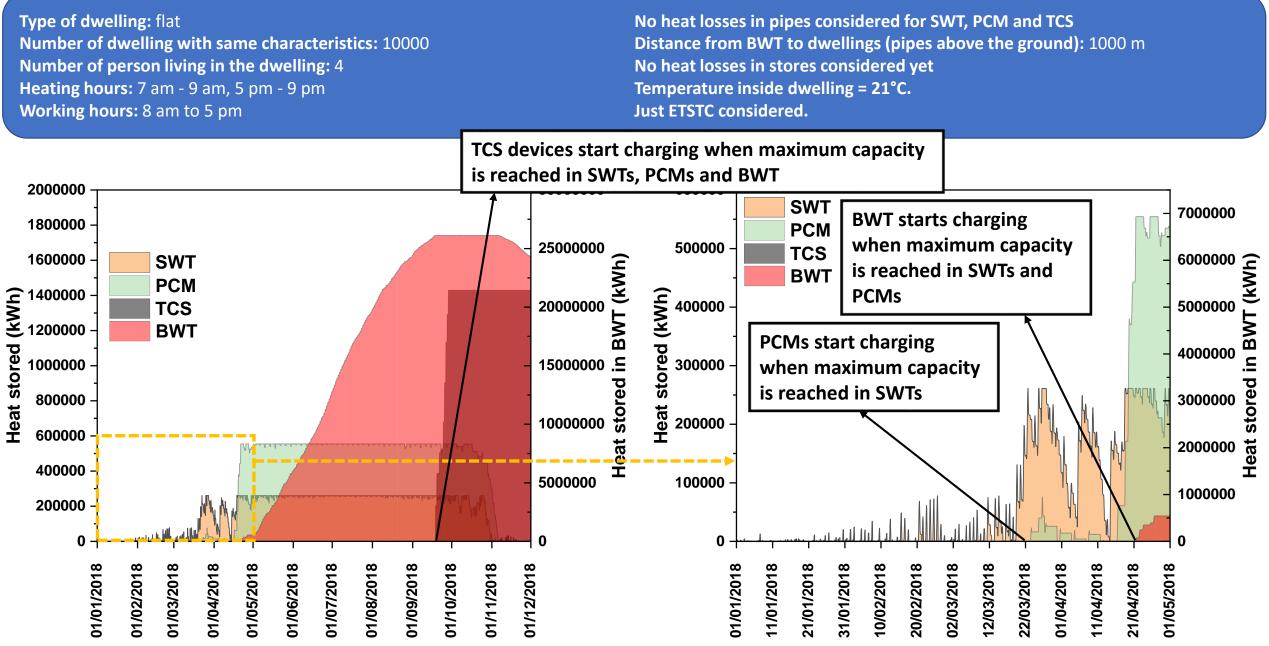
The Big Water Tank help to meet heat demands in winter and autumn months.

> 600 550

500

250 5


500 00 Number


WATER SMALL TANKS

50

< PCMs

WATER BIG TANKS

FUTURE WORK

- i. Identify possible sources of waste heat near Loughborough.
- ii. Assume biomass-source heat production capacity (MW).
- iii. Introduce heat losses in stores (kWh).
- iv. Find a detailed profile for domestic hot water consumption.
- v. Calculate friction losses in pipes.
- vi. Consider profiles when discharging some TES materials (PCMs).
- vii. Find cost of the different materials and technologies in order to carry out a proper study.
- viii. Decide lengths of pipes for the different sections of the District Heating. Decide if pipes will be underground or above the ground.

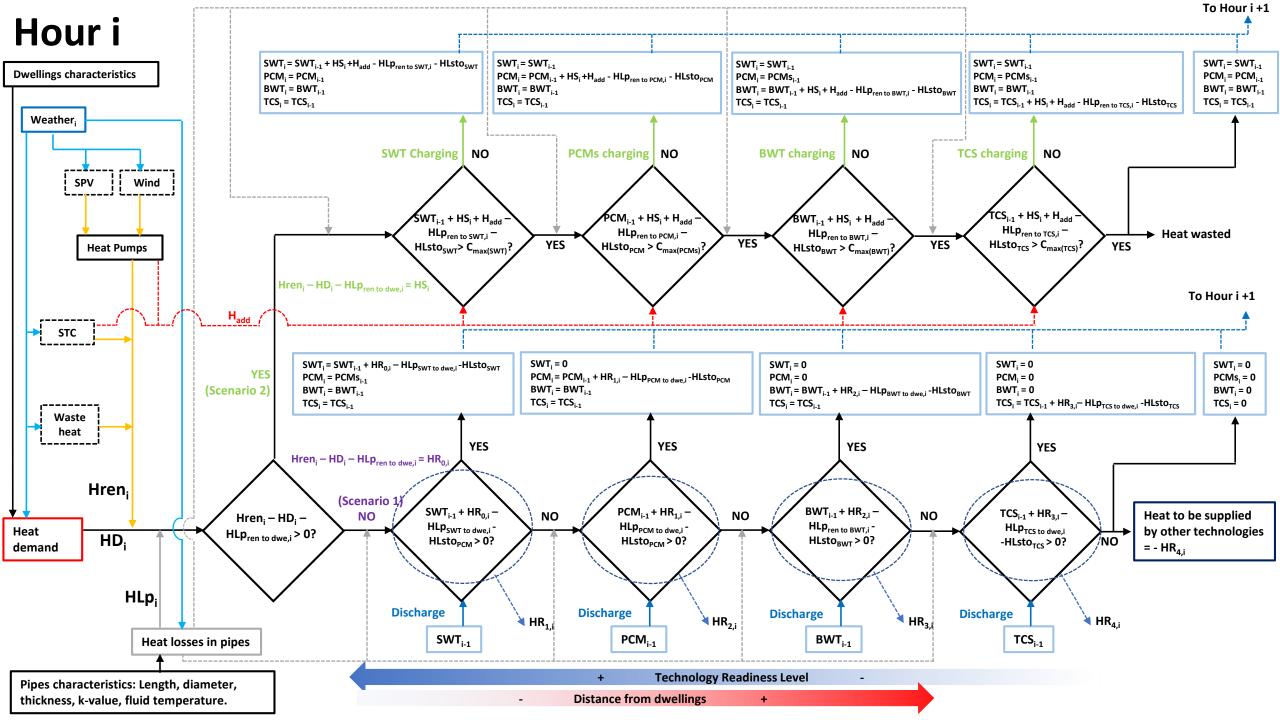
House type	Occupancy level	Number of occupants	Occupant characteristics	Mean appliance gains (W)	Mean active occupancy as % of day	Mean hot water use (litres/day)
Terrace	Low	1 adult	Part-time employment	160.4	35.8%	51.4
Terrace	High	3 adults	2 x full-time employment + 1 x non- working	503.8	54.0%	125.7
Detached	Low	2 adults/2 children	1 x full-time employment + 1 x non- working	272.0	48.2%	50.0
Detached	High	2 adults/3 children	1 x full-time + 1 x part-time employment	456.0	55.8%	251.6
Semidetached	Low	1 adult/1 child	Non-working	199.1	45.0%	85.5
Semidetached	High	2 adults	Both retired	582.2	54.8%	146.9
Flat	Low	1 adult	Non-working	115.4	41.2%	42.3
Flat	High	2 adults/1 child	1 x full-time employment + 1 x non- working	228.2	46.2%	82.7

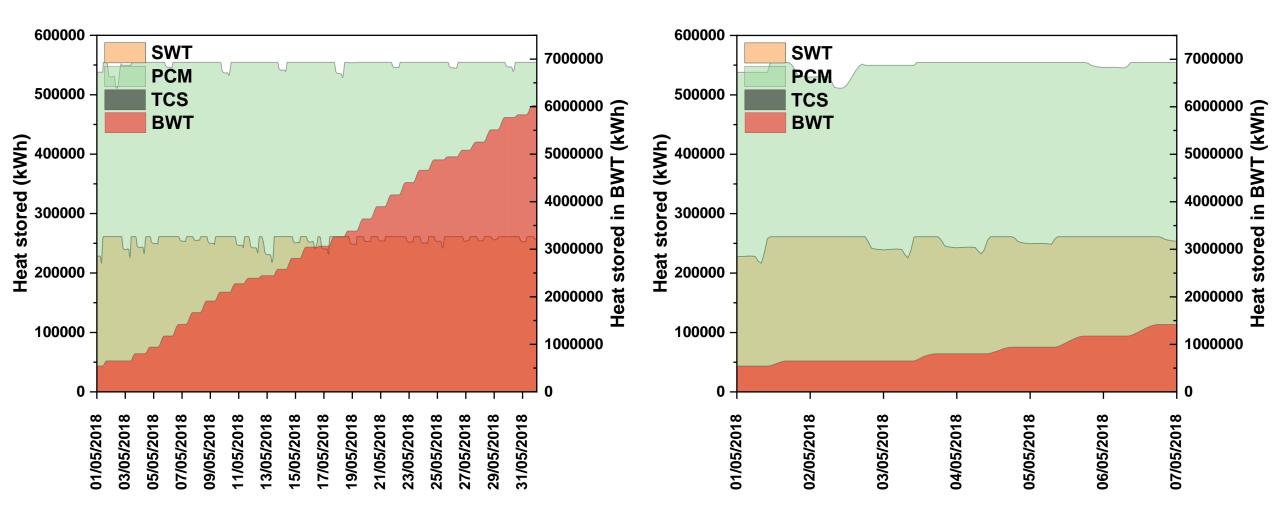
ix. Include different profiles for dwellings.

[1] J. Allison, K. Bell, J. Clarke, A. Cowie, A. Elsayed, G. Flett, G. Oluleye, A. Hawkes, G. Hawker, N. Kelly, M.M.M. de Castro, T. Sharpe, A. Shea, P. Strachan, P. Tuohy, Assessing domestic heat storage requirements for energy flexibility over varying timescales, Appl. Therm. Eng. 136 (2018) 602–616. doi:10.1016/J.APPLTHERMALENG.2018.02.104.

FUTURE WORK

- x. Detailed spatial/temporal model for district heating networks including thermal storage.
- xi. Produce results and validate the model.




Simulation of a 4th generation district heating network operating with renewable heat sources and TES technologies

LoT-NET project

Miguel Angel Pans Castillo Philip Eames

13-12-2019

