Low Temperature Heat Recovery and Distribution Network Technologies

Dr Linwei Wang

Research Associate Centre for Renewable Energy Science Loughborough University

IT III MARKEN

Wang2@boro.abak

London South Bank University

Experiments – Long Cycle Mode

Fig 1. Long cycle experimental mode

Long Cycle Experimental Mode

(i) Before the first cycle, raw materials to be dried;

(ii) 0-660min (11h), at 25°C and relative humidity;

(iii) 660-661 min, at 25°C with relative humidity 0%;

(iv) 661-756 min, from 25°C to 120°C with 1 °C/min heating rate;

(v) 756-816 min, at 120°C;

(Vi) 816-835 min, from 120°C to 25°C with 5 °C/min cooling rate.

Dimensionless water uptake rate $\delta = \frac{m - m_0}{m_{ee} - m_0}$; Water uptake capacity $\chi = \frac{m_{\infty} - m_0}{m_0}$; Sorption characteristic time τ : $1 - exp(-t/\tau) = \frac{m - m_0}{m_{ex} - m_0}$; Initial sorption rate for the first 30min of hydration σ : $\sigma = d \left(\frac{m - m_0}{m_{\infty} - m_0} \right) / dt$

m: water uptake; m_0 : initial water uptake; m_∞ : maximum water uptake; t: time.

Loughborough University

Experiments – Long Cycle Mode Hydration

Fig 2a. Mass change compare among materials during hydration in long cycle experimental mode. RH90%

Fig 2c. Sorption characteristic time compare among materials during hydration in long cycle experimental mode. RH 90%

Fig 2b. Dimensionless water uptake rate compare among materials during hydration in long cycle experimental mode. RH 90%

Fig 2d. Initial sorption rate compare among materials during hydration in long cycle experimental mode. RH 90%

Numerical Model

LOT-NET 🐶

 $\frac{\partial}{\partial t} \left[\left(\eta_h + \eta_s + \eta_g \right) T \right] = K \nabla^2 T + D_m \chi \eta_h \exp(-E/T)$ $\left(K = \eta_h + \frac{C_h k_s}{C_s k_h} \eta_s + \frac{C_h k_g}{C_g k_h} \eta_g\right)$ Mass conservation: $\frac{\partial \eta_h}{\partial t} + \frac{c_h}{c_s} \frac{\partial \eta_h}{\partial t} + \frac{c_h}{c_a} \frac{\partial \eta_h}{\partial t} = 0$ Decomposition of $MgSO_4 \cdot 7H_2O: \frac{\partial \eta_h}{\partial t} = -D_m \eta_h \exp(-E/T)$ Production of $MgSO_4$: $\frac{\partial \eta_s}{\partial t} = -\frac{M_sC_s}{M_bC_b}\frac{\partial \eta_{sh}}{\partial t}$

 $(\eta_h, \eta_s \text{ and } \eta_q \text{ represents the concentration of hydrate salt, anhydrous salt and$ water vapour, respectively.)

Initial conditions:

$$T_0 = 0.9366, \eta_{h0} = 0.9, \eta_{s0} = 0, \eta_{g0} = 0$$

Dimensionless $T = \frac{T_{real}}{T_r} (T_r - \text{dehydration temperature})$

Results

Mesh grid:

X

y

$$= 0: dh: 1; nx = length(x); dt = 0.000001 = 0: dh: 1; ny = length(y); dh = 0.005$$

Fig 3b. Transient Evolution of concentration

Fig 3c. Time required to initiate the reaction for different values of the heat flux.

Low Temperature Heat Recovery and Distribution Network Technologies

Dr Linwei Wang

Research Associate CREST, Loughborough University L.Wang2@lboro.ac.uk

n n

London South Bank University