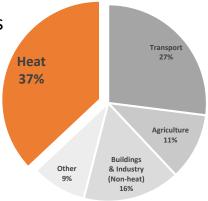


G. Atkinson, STET, The University of Warwick

Friday 13th December 2019 | School of Engineering, The University of Warwick

Next-generation ammonia adsorption heat pump cycles and technology



Why are we interested?

 Emissions from heat are still the biggest contributor to UK emissions (hot water 4% & space heating/cooling 17%.)^[1]

- 85% of UK households use natural gas for space heating.^[1]
- Sorption heat pumping technologies offer:
 - Potential in reducing CO₂ emissions associated with domestic heating by improving end use efficiency.
 - Consumer familiarity with systems designed with the 'look and feel' of a gas boiler in the UK market.

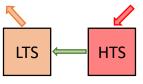
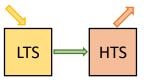


Fig. 1 Estimated UK emissions attributable to heating, 2016 [1].

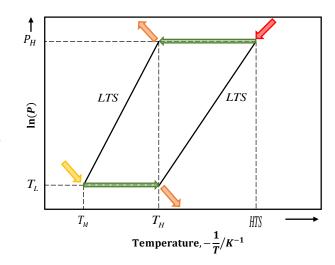
Principle of operation

Heat output Q_M at temperature T_M (\rightleftharpoons) as useful heat.



Ammonia flow from HTS bed to

LTS bed (=).


Heat input Q_H at temperature T_H (\leftarrow) from high temperature source.

Heat input Q_L at temperature T_L \Longrightarrow) from low temperature source.

Heat output Q_M at temperature T_M (\Longrightarrow) as useful heat

Ammonia flow from LTS bed to HTS bed (➡).

Fig. 2 (Approx.) Clausius-Clapeyron diagram for a 2-salt heat pump operation.

Plan of action

- MATLAB® modelling of a 2-bed system
- Experimental validation of the simulation results.
 - Manufacture of a PoC machine
 - Testing with the ThermExS facilities in STET
- Further modelling and potential to develop a simulation of a more complex cycle.
- Overall feasibility of the technology for the UK market (and further afield)

Fig. 3 ThermExS facilities in use at Warwick. [2]

Thank you for your attention

