Introduction

• About me
 • PhD Student at Warwick Institute for Science of Cities (WISC)
 • Data scientist
• What is Transactive Energy?
 • Automated P2P energy trading platform
 • Inter-vectoral
 • Technology based on IoT, AI and Blockchain
 • Part of a cyber-physical systems prevalent in smart cities
More on Transactive Energy

- Device level control
- Operated by multi-agent system
- Benefits
 - Greater integration of renewables
 - Distributed control
 - Resilience
 - Community empowerment

Transactive Energy - Campus

• Collaboration with Estates and Fetch.ai
• Initial scope – Energy Centres
• Next – more diverse set of assets
• Such as...
 • Leverage heat latency in buildings
 • Storage / EV Charging
 • Renewables
Energy Centre Schematic

Key:
- Combined Heat and Power Engine
- Boiler
- Thermal Energy Store
- Electricity Vector
- Heat Vector
- Gas Vector
Energy Centres - Existing Control Model

• Rules based Energy Management software
 • Domain knowledge
 • Forecasting key to decision making
• Makes decision at a fine temporal scale, but...
• Does this model optimise cross-vectorial energy management?
Machine Learning Approach

• Data driven
• Multi-agent system (AI)
• Optimisation problem – minimise cost
• Train using 2 years of data from energy centre
• Hourly control actions seeks the optimal mix of asset utilisation to meet energy demand
Results – Total Cost

Total Energy Centre Costs 2018 (£)

- Reduce costs by 12.8% in 2018

Energy Centres Costs in 2018 (£) over time
Results – Cost of Gas vs Electricity

- Gas costs increase 21.8%
- Electricity imports decrease 46.5%

Total cost of gas (£) 2018

Total cost of imported electricity (£) 2018
Results – Asset Utilisation

Electricity Generated vs Electricity Imported

Heat dispersed vs Heat Saved

- More intensive and dynamic use of CHPs
- GBs used less extensively
- Better at cross-vectorial optimisation
Actionability

• Working with estates to understand actionability of results
• Findings can work both ways
 • Can help make argument for how to better run energy centres
 • Support investment decisions
• Starting to investigate feasibility of real-world deployment
 • Controls to replicate
 • Establish responsibilities
Next Steps....

• Phase 1 - Energy Centre Pilot
 • Parallel run
 • Live deployment
 • Additional data feeds

• Phase 2 - Wider TE Pilot
 • Include a more diverse set of assets